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In this work the capability of existing cohesive models to predict the thermodynamic properties of Fe–Cr
alloys are critically evaluated and compared. The two-band model and the concentration-dependent
model, which are independently developed extensions of the embedded-atom method, are demonstrated
to be equivalent and equally capable of reproducing the thermodynamic properties of Fe–Cr alloys. The
existing potentials fitted with these formalisms are discussed and compared with an existing cluster
expansion model. The phase diagram corresponding to these models is evaluated using different but
complementary methods. The influence of mixing enthalpy, low-energy states and vibrational entropy
on the phase diagram is examined for the different cohesive models.
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1. Introduction

High-chromium ferritic/martensitic steels are candidate struc-
tural materials for advanced fission reactors, accelerator-driven
systems using spallation neutron sources and fusion reactors [1].
One of the reasons for these steels to be selected as reactor core
materials is their superior resistance to irradiation, in terms of
low damage accumulation and low swelling, as compared to e.g.
austenitic steels [2–5]. Nonetheless, in future nuclear systems it
is expected that materials will be subjected during operation to
very harsh irradiation and environmental conditions [1], not easy
to withstand even for the best material choice. A quantitative
understanding of the mechanisms leading to the change of the
properties of these steels after long-term exposure to irradiation
is therefore recognized to be of high importance for a safe design
and operation of innovative nuclear systems [6]. A great deal of
understanding can be achieved by studying simpler model systems
such as, in this case, Fe–Cr alloys. For this reason, in recent years
significant effort has been put for the development of numerical
multi-scale models of the response to irradiation of these alloys
(e.g. [7,8]). These models have the ambition of deducing the mac-
roscopic response of the material to given conditions starting from
a detailed knowledge of the fundamental interactions between
ll rights reserved.
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atoms. It is a long-term approach that bears, however, the promise
of being reliable, transferable and beyond empiricism.

The starting point for such an approach is a cohesive model for
the description of the atomic interactions in the material of inter-
est that should be applicable to millions of atoms, i.e. beyond the
capabilities of ab initio methods, restricted to a few hundreds of
atoms at the most. In the case of an alloy, a correct description of
its thermodynamic properties, in terms of phase stability and equi-
librium atomic distribution vs. temperature and concentration,
may be seen as a necessary condition that such a cohesive model
should fulfill, in order to be reliably used to model both equilib-
rium and out of equilibrium phenomena taking place under
irradiation.

The Fe–Cr solid phase diagram, if the high temperature r-phase
region is neglected, is relatively simple, with only a large miscibil-
ity gap (MG) between two body-centred-cubic (bcc) phases, one
rich in Fe, named a, the other rich in Cr, denoted as a0. Fig. 1 shows
the standard Fe–Cr phase diagram, as built using the Calphad data-
base [9] and essentially coincident with the phase diagram pub-
lished in [10]. In this figure, the metastable MG, i.e. the MG that
would exist if the r-phase did not form, is also shown. Since the
formation of the r-phase is very slow under thermal ageing, its
formation is in fact invariably preceded by a-a0 phase separation
[11–13]. Thus, for most purposes it is the metastable MG that
counts to describe the thermodynamics of the system. Henceforth,
this metastable MG is referred to as, simply, MG. From the figure, it
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Fig. 1. Portion of the Fe–Cr solid phase diagram according to Calphad [9]. The
dashed line indicates the metastable a–a0 miscibility gap, and the dash-dotted line
indicates the Curie temperature.
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Fig. 2. The mixing enthalpy curves at 0 K for random or quasi-random ferromag-
netic Fe–Cr alloys according to different DFT techniques [16,19,21], as discussed in
the text. For comparison, the only existing experimental data, obtained for the
paramagnetic phase [56], are also shown.
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can be seen that, while the complete closure of the MG, including
the r-phase, occurs at about 1100 K, the metastable MG closes at
about 900 K (for experimental data showing this, see Ref. [10]).

Notwithstanding its apparent simplicity, the microchemical
behaviour of the Fe–Cr system is not trivial. Resistivity measure-
ments and neutron scattering studies on well-annealed alloys re-
vealed the existence, at about 700 K, of an inversion of the sign
of the short-range order (SRO) parameter from negative (at 5%
Cr) to positive (at 15% Cr), the zero crossing occurring at about
10% Cr [14]. This means that in Fe–5% Cr solute atoms tend to be
surrounded by Fe atoms, while in Fe–15% Cr they tend to be sur-
rounded by Cr atoms, i.e. to aggregate (giving rise to precipitation
of the a0-phase). This effect has been confirmed by more recent
Mössbauer and X-ray studies at different temperatures [15]. An
explanation for the origin of this inversion of the sign of the SRO
came recently from density functional theory (DFT) calculations.
Different studies, performed with different DFT methods, showed
that the mixing enthalpy of random, quasi-random and ordered
ferromagnetic Fe–Cr solid solutions is negative below a critical
concentration and becomes positive above it [16–22]. Data for ran-
dom and quasi-random ferromagnetic alloys are shown in Fig. 2.
Although quantitative differences exist between different DFT
approximations (the critical concentration shifts between about
4% and 10% Cr and the depth of the negative well changes, too),
the results are qualitatively similar and in clear agreement with
the above mentioned experiments, as will be further shown in this
work, since a negative mixing enthalpy implies conceptually that
Cr atoms prefer to be surrounded by Fe, rather than by Cr atoms.
The analysis of the DFT results provided also a clear physical expla-
nation for this effect in terms of electron-band and magnetic prop-
erties of Fe and Cr [18,19]. The single Cr atom prefers to be
surrounded by Fe atoms and Cr has, therefore, a negative heat of
formation, as a consequence of a lowering of the density of states
at the Fermi level, thus a lowering of the total energy, as exten-
sively discussed in [19]. In addition, pure Fe is ferromagnetic in
its ground state and pure Cr can be described as antiferromagnetic
in its ground state [18,23]. However, a Cr atom surrounded by Fe
atoms has an antiparallel magnetic moment to those of the Fe
atoms [18,23]. If a second Cr atom is introduced nearby, the effect
of ‘magnetic frustration’ occurs [18]. The latter is because either Cr
atom favours its magnetic moment antiparallel to Fe as well as to
Cr neighbours. When many Cr atoms are close to each other in Fe,
different magnetic configurations can result from the competition
[18]. In dilute alloys, the energetically most favourable situation is
obtained when the Cr atoms are distributed sufficiently far from
each other to avoid magnetic frustration (i.e. by ordering the alloy).
When, however, the concentration of Cr is high enough, Cr–Cr
interactions cannot be avoided, leading to a positive formation en-
thalpy, i.e. to a tendency to segregate. Additional insight has been
obtained very recently, pointing out that the negative short-range
order found for sufficiently low-Cr concentrations is not only the
result of a pure repulsion between Cr atoms, but that, in addition,
an effective long-range attractive interaction between Cr atoms
exist, which appears to stabilise precise intermetallic phases,
endowed with long-range order, at low temperature [22].

Reproducing this change of sign of mixing enthalpy and SRO
parameter vs. concentration in Fe–Cr with a semi-empirical cohe-
sive model has been in the last few years one of the main chal-
lenges for Fe–Cr modellers [7,8,24]. Doing this involves the
introduction of an explicit or implicit dependence on concentration
for the sign of the interactions. This task was soon realised [24,25]
to be out of the scope of, for example, the traditional embedded-
atom method (EAM) [26], or the functionally equivalent second-
moment tight-binding approximation [27], calling for different for-
malisms to be developed. Given the largely magnetic origin of the
afore described behaviour of Fe–Cr alloys, some recipe to include
information about spins should a priori be considered and a simple
example of such a model has been drafted in [28]. At the moment,
however, no semi-empirical magnetic cohesive model for Fe–Cr
has been fully developed and published to our best knowledge. In-
stead, three cohesive models exist, that do not explicitly include
magnetism, but still reproduce the complex behaviour of Fe–Cr
reasonably well. These models are: the cluster expansion (CE)
developed by Lavrentiev et al. [29], the interatomic potential
developed by Caro et al. [30] and the interatomic potential devel-
oped by Olsson et al. [31]. The latter two formalisms are ad hoc
extensions of the standard EAM, where an additional term depen-
dent on local concentration is introduced to reproduce the change
of sign in the heat of mixing. In this work, the descriptions of the
thermodynamic properties of Fe–Cr given by these three cohesive
models, which represent the current state-of-the-art, are com-
pared and critically discussed, with a view to determining their
range of validity from the thermodynamic standpoint and to
identifying which developments are still needed in order to
come up with a fully reliable cohesive model for the Fe–Cr system
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specifically, but also for any alloy in general. In particular, by sep-
arating effects in our analysis, we show that a number of ‘ingredi-
ents’ must be included in order to produce a cohesive model
consistent with thermodynamics.

2. Semi-empirical cohesive models

CE techniques allow the energy (enthalpy) of an alloy to be ex-
pressed in terms of configurations of atoms on a (rigid) lattice with
N sites, by using occupational spin variables, ri (one per lattice
site), that, in the case of a binary alloy, take the values ±1 depend-
ing on whether the corresponding lattice site is occupied by one
species or the other [32]

Eð~riÞ ¼ J0 þ
X

c
DcJc

Y
i2c

ri: ð1Þ

Here ~ri ¼ frigi¼1;:::;N , J0 is a constant, c denotes any cluster defined
on the lattice (lattice subset), Jc are the effective cluster interactions
(ECIs), i.e. the coefficients of the expansion to be fitted, and Dc are
the degeneracy factors (number of equivalent clusters in terms of
symmetry). A smart choice of the clusters included in the expansion
allows, by fitting the ECIs, the energy (enthalpy) for any lattice con-
figuration to be properly reproduced. The result, however, is not di-
rectly sensitive to the displacements from the perfect lattice sites
that atoms may experience due to strain field (relaxation) or tem-
perature (vibration) effects. In order for these effects to be fully al-
lowed for, interatomic potentials are needed, which, in the case of
metals, are typically constructed in the EAM formalism. In this for-
malism, the total energy of a system of N atoms, whose type can be
different and is denoted by ti, can be written as
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where F is the so-called embedding function, a functional of pair-
wise functions of the interatomic distances, each representing the
electronic density contribution due to the surrounding atoms on
the central one, and V is the pairwise energy contribution. Two
modifications of this formalism have been proposed to fit a sign-
changing mixing enthalpy, both focused on the proper fitting of
the cross Fe–Cr interaction only, and otherwise using for the pure
elements already existing potentials. In both cases the same pure
element potentials have been adopted, namely the EAM-type Fe–
Fe potential by Ackland et al. [33], developed using the methodol-
ogy proposed and applied already in [34], and a second-moment
tight-binding approximation Cr–Cr potential developed by Walle-
nius et al. [24]; both are state-of-the-art interatomic potentials for
these two elements.

In the first modification [30], after renormalising the potentials
for the pure elements in ‘effective gauge’ [27], an explicit depen-
dence on concentration is introduced by multiplying the pair inter-
action term times a function htitj

ðxijÞ
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with hAA(xij) = hBB(xij) = 1. Here xij represents the local concentration,
which is postulated to be given by the average at the two interact-
ing atoms of the ratio between partial and total electronic densities

xij ¼
1
2

qB
i

qtot
i

þ
qB

j

qtot
j

 !
; ð4Þ

where qB
i represents the contribution to the electronic density on

atom i coming from atoms of type B only, while qtot
i is the total elec-

tronic density. The function htitj
ðxijÞ can be written in the form of a

typical Redlich–Kister expansion for thermodynamic functions
(Calphad methodology) [9,35], with parameters fitted to closely
reproduce the given reference mixing enthalpy curve and enables
in principle any concentration dependence of such a curve to be rec-
reated. This approach is henceforth denoted as concentration-depen-
dent method (CDM).

The other modification [31] introduces the dependence on con-
centration in an indirect way and follows a somehow opposite
route, by working on the embedding part, rather than on the pair-
wise potential. Namely, after drawing the attention on the fact that
not only d-band electrons, but also s-band electrons participate in
defining the energy of a transition metal alloy [31,36], Olsson et al.
introduce two separate embedding functions, one for each band, as
well as correspondingly separate electron density functions
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The concentration dependence is here contained in the s-band
mixed electronic density (no s-band contribution is assumed in
the case of the pure elements) and in practice the presence of the
second embedding function provides sufficient degrees of freedom
to fit closely any reference mixing enthalpy curve, as in the CDM
case. This approach is henceforth denoted, for obvious reasons, as
the two-band method (2BM).

Despite the apparent difference between the CDM (Eqs. (3) and
(4)) and the 2BM (Eq. (5)) formalisms, it can be demonstrated that
they are, in fact, very similar, as sketched in Appendix A.
3. Methodology for the evaluation of thermodynamic
properties

3.1. Phase diagram computation

To obtain the phase diagram for each of the above-described
cohesive models, three different, but complementary, methods
were used.

The first and most naïve method involves the use of the regular
solution model (RSM) [37], meaning that all the atoms are ran-
domly distributed and that the only entropic contribution is con-
figurational. This approximation is meaningful in the high
temperature limit, because it neglects all configurational effects
driven by low-energy ordered structures. At the same time, how-
ever, vibrational effects, which may become important at high
temperature, are neglected and the enthalpy is assumed to be
independent of temperature (its 0 K shape is maintained unaltered
for the evaluation of the free energy at each temperature). Using
this scheme, the mixing free energy per atom is easily expressed as

Fðx; TÞ ¼ EðxÞ � xECr � ð1� xÞEFe þ kBT½x lnðxÞ þ ð1� xÞ lnð1� xÞ�;
ð6Þ

where EFe and ECr denote the cohesive energy of Fe and Cr, respec-
tively, at 0 K. Using this free energy expression, the phase diagram
is easily obtained by means of the common tangent method [37].

The second method consists of using the freely available ATAT
package [38,39], which has been interfaced to an in-house molec-
ular dynamics (MDs) code that works as ‘energy engine’. Broadly,
the package works in two stages: firstly, an automated statistically
optimised procedure is followed in order to build a cluster expan-
sion of the energy (this is where the MD code and the interatomic
potential, enters; clearly, in the case of the CE model from [29] this
step is skipped); secondly, the previous expansion is fed to a Monte
Carlo code working in the transmutation (semi-grand canonical)
ensemble for tracking the phase boundaries. The cluster expansion
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is here used as an economic way to compute the energy of any
configuration of the simulation box. The transmutation ensemble
allows the species to change their nature, so that the controlling
variables are temperature T and chemical potentials differences.
The bcc simulation box referred to above is not strictly rigid, be-
cause atomic relaxations are accounted for when building the clus-
ter expansion. This method takes the configurational entropy
implicitly into account, making the effects of possible low-energy
structures visible on the phase boundaries. The main shortcoming
of such an approach is the lack of vibrational entropy, not explicitly
included in the method.

Finally, the third method consists in complementing the first
and/or second one by taking the vibrational entropy into account.
For this purpose, two routes can be followed. One way is by intro-
ducing temperature dependent ECIs into ATAT, here pursued in the
case of the 2BM potential. The pre-requisite for this route is a pre-
vious knowledge of the vibrational entropy implicit in the used
cohesive model (this is possible for interatomic potentials; in the
case of the CE from [29], the best that can be done is to estimate
such a contribution over the whole range of compositions from
available experimental data). Vibrational entropy calculations with
interatomic potentials were therefore performed as described in
Section 3.2. The other route involves applying a full thermody-
namic integration for different alloy compositions [40], by exploit-
ing MD techniques, thereby implicitly taking the vibrational
entropy into account. The computational samples for the different
concentrations can be produced in such a way that short-range or-
der is explicitly accounted for, as shown in [41]. This method, how-
ever, can hardly take into account the possible existence and
stability, according to the used cohesive model, of low-energy
structures that may enter and modify the phase diagram built for
random or partially ordered phases only. The stability of these
structures for a given cohesive model is best obtained via a sepa-
rate evaluation, as described in Section 3.3.

3.2. Vibrational entropy

Within the classical high temperature limit, the vibrational free
energy of a system of oscillators, Fvibr, is expressed through the De-
bye temperature, TD, according to [42]

FvibrðTÞ ¼ 3kBT lnðTD=TÞ; ð7Þ

neglecting optical modes and peculiarities of the phonon spectra. By
applying the above to a binary alloy of solute concentration x, the
vibrational free energy of formation (or excess vibrational free en-
ergy) is obtained as

Fmix
vibrðx; TÞ ¼ 3kBT ln

TDðxÞ
ðTCr

D Þ
x ðTFe

D Þ
1�x

 !
: ð8Þ

Note that, due to cancellation of kinetic energy terms, the above
equation is nothing but the vibrational entropy contribution upon
mixing, �TSvibr. The goal is then to compute TD(x), for the purpose
of which two approaches were followed; the first purely harmonic
in nature, the second one incorporating some of the lattice
anharmonicity.

The first approach (here termed MJS) gives an approximate for-
mula for TD based on full phonon spectra calculations for a number
of cubic metals [43]

TD ¼ 0:617ð6p2Þ1=3 �h
kB

X1=3B
M

 !1=2

; ð9Þ

where X denotes the atomic volume, M is the average mass and B is
the bulk modulus of the alloy. To compute B, cubic boxes containing
2000 randomly distributed atoms were used.
The second approach involves MD runs on the above boxes for
several temperatures relevant to the phase diagram. The samples
were thermalised for about 20 ps and data on the mean squared
displacements, < r2 >, collected during the following 60 ps. Assum-
ing the solid behaves as an average oscillator with Einstein-like fre-
quency xE, energy equipartition leads to

x2
E ¼

kBT
< r2 > M

; ð10Þ

from which the Einstein temperature is easily obtained as TE ¼
�hxE=kB. It is clear that this allows for some temperature depen-
dence in xE, that is carried over to TE(TD), so that the approach
may be termed ‘quasi-harmonic’ and is probably more accurate
than the first, fully harmonic approach.

3.3. Possible ground states and low-energy states

For a binary alloy with a given lattice symmetry, there existPM
n¼12n possible ordered structures for a given unit cell containing

up to M atoms. Whether wanted or not, a semi-empirical cohesive
model may stabilise some of these structures. If so, it is important
to know which ones, as in reality they may or may not exist and
their presence influences the phase diagram as predicted by the
cohesive model. These ordered structures can easily be enumer-
ated as described in [44], but it is clear that the total number of
structures increases fast with M, from which only a selected few
represent possible ground states or low-energy states of the sys-
tem of interest. It is thus desirable to sample these low-energy
states instead of evaluating all possible ordered structures. A way
to select ground states is based on the configuration polyhedron
[45,46]. In short, given a lattice and a (set of) maximal cluster upon
it, the configuration polyhedron is a convex region in the correla-
tion functions (CFs) space where the probability of any specified
cluster configuration is assured to be non-negative. The vertices
of such a polyhedron are candidates to the system’s ground states,
though not all of the associated ordered structures are feasible, i.e.
physically possible for the given lattice. In what follows we under-
stand this concept in the latter more restricted sense of feasible
vertices only. Also, here we denote the m-th CF for a cluster of n
nodes as nn,m.

Finel [47] studied the bcc lattice by using two maximal clusters,
the standard octahedron and the cubic unit cell, so distances up to
5th nearest neighbour (5nn) were considered, except 4nn. From
that work a polyhedron of 28 vertices (with 97 faces in the 5-D
space of n1, n2,1, n2,2, n2,3 and n2,5 coordinates) was constructed
and the vertices were identified with the associated ordered struc-
tures. New vertices were then added by selecting ordered struc-
tures from previous ATAT runs, used to construct the bcc Fe–Cu
phase diagram [48]. For each of these structures the respective
CFs were determined in 6-D space using the point correlation func-
tion n1 and five doublets up to 5nn: n2,1, n2,2, n2,3, n2,4 and n2,5. Then
these CFs were checked against the 28 original vertices given by
Finel, with the result that the number of vertices of the polyhedron
was raised up to 99 (with 1750 faces in 6-D space). The ordered
structures corresponding to these vertices are referred to as BCC-
99 and serve to sample possible ground states.
4. Results and discussion

4.1. The effect of the mixing enthalpy at 0 K on the phase diagram

As mentioned in the introduction, mixing enthalpy data for Fe–
Cr alloys from different DFT calculations exist [16–22] and some of
them have been used to fit the semi-empirical cohesive models
analysed in this work. All available data for random and quasi-
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random ferromagnetic mixtures are shown in Fig. 2, as calculated
in the generalised gradient approximation (GGA) with spin polari-
sation, using two different methods: (i) a basis set of exact muffin-
tin orbitals (EMTO), in the coherent potential approximation (CPA)
to reproduce a fully random environment [16,19]; (ii) in supercells
– with the projector augmented wave (PAW) method [49], as
implemented in the VASP code [50–53] – where special quasi-ran-
dom structures (SQS) [54] where created [19,21]. In the latter case,
the difference between the two curves depends on whether the
Vosko–Wilk–Nusair (VWN) interpolation of the correlation energy
[55] is used [21] or not [19] (the complete set of data including this
interpolation is here published for the first time). In the former
case (EMTO–CPA calculations), the origin of the difference between
the curves obtained in [16] and [19] for the ferromagnetic alloy
would need to be investigated, but are likely due to the slightly dif-
ferent conditions used, which influenced the effective volume and,
therefore, the mixing. As already remarked, the quantitative differ-
ences depending on the used method, even remaining within a
DFT–GGA scheme, are non-negligible. EMTO–CPA-‘03 provides a
minimum comparable to the minimum predicted by PAW–SQS,
although a much higher maximum. EMTO–CPA-‘06 provides a sig-
nificantly deeper minimum and again a higher maximum com-
pared to PAW–SQS. The latest corrected PAW–SQS calculations,
with the VNW interpolation, provide a curve that lays in-between
the previous calculations and is accepted to be the most reliable.
For reasons of comparison, also the experimental paramagnetic
mixing enthalpy curve obtained at 1600 K [56], which is perfectly
reproduced by non-spin-polarised EMTO–CPA calculations [16,19],
is presented in the figure. The EMTO–CPA-‘03 curve was used as
reference to fit the CDM potential [30], while the PAW–SQS curve,
without VWN interpolation, in its part for xCr < 50%, was used as
reference to fit the 2BM potential [31]. Concerning the CE from
[29], the fitting was done on data for ordered structures, published
in [18,20].

The mixing enthalpy curves calculated from the three cohesive
models are presented in Fig. 3 and compared with, on the one
hand, the Calphad curve [9,10], as extrapolated to 0 K from the cor-
responding Redlich–Kister expansion [35], and, on the other, the
most recent PAW–SQS mixing enthalpy curve from Fig. 2. It can
be observed that in no case is the fit of the potentials totally accu-
rate. The CDM curve is indeed close to, although with a somewhat
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Fig. 3. Mixing enthalpy at 0 K for the Fe–Cr system according to CDM and 2BM
potentials, as well as CE, in the random solution limit, compared with the most
recent PAW–SQS data and with the Calphad curve (extrapolated to 0 K from the
corresponding free energy expansion). The blow-up shows more in detail the sign-
changing curves in the low-Cr region.
higher minimum and a somewhat lower maximum than, the
EMTO–CPA-‘03 curve, used as a reference for the fit. In addition,
the CDM curve is fortuitously very close to the curve obtained from
the CE from [29]. Conversely, the 2BM curve matches relatively
well the PAW–SQS curve up to about 25% Cr, but, in the Fe-rich re-
gion, the values are more negative and closer to those of the
EMTO–CPA curve. Above �25% Cr, the 2BM curve lies clearly below
the PAW–SQS curve and, fortuitously, approaches the Calphad
curve which, in turn, is extremely similar to the experimental para-
magnetic one, shown in Fig. 2. Finally, on the Cr-rich side, the 2BM
curve presents a second negative region, thereby appearing sym-
metric. This symmetric shape, with negative regions on both sides,
which is in disagreement with both the DFT ferromagnetic and the
experimental paramagnetic data, corresponds to a deliberate
choice made in [31], so that the fitting of the latter potential was
in fact mixed: partly to DFT data and partly to other considerations
(discussed later on). The implications for the phase diagram of the
specific concentration dependence of the random alloy mixing en-
thalpy curves at 0 K according to the three different models are dis-
cussed in the following.

The phase diagrams obtained from the cohesive models within
the RSM approximation are presented in Fig. 4. The MG closes at
3376, 2728 and 2652 K for CE, CDM and 2BM, respectively. These
values, although inaccurate, represent an upper limit for the given
model, since the randomly disordered alloy represents the high
temperature limit. A first correlation between the mixing enthalpy
curves and the phase diagrams can be found in the large solubility
at low temperature in the Fe-rich region (�5% Cr at 300 K), which
is an obvious consequence of the negative heat of mixing in that re-
gion for the three cohesive models. The large solubility at low tem-
perature in the Cr-rich region for the 2BM is correspondingly also
due to the negative heat of mixing on that side. It therefore appears
that the choice of a symmetric mixing enthalpy curve makes the
2BM predict the concentration of Fe in the a0-phase to be non-neg-
ligible (�10% Fe), at temperatures of technological interest (<850 K),
in agreement with experimental observations [12,13,57–59] (see
also Ref. [60]), while CDM and CE yield essentially pure Cr precipi-
tates. Despite this apparently ‘good’ result of the 2BM, deliberately
imposing a negative heat of solution also for Fe in Cr to obtain this
effect is probably not fully justifiable. Although experimentally, to
our best knowledge, there are no data either proving or disproving
this assumption, DFT calculations certainly do not support it. At
the same time, though, DFT methods are known to fail to correctly
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Fig. 4. The phase diagram according to the three cohesive models in RSM
approximation.
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predict the ground state for Cr [61,62], thereby suggesting caution
concerning their full reliability in the Cr-rich region. Nonetheless,
since a sign-changing mixing enthalpy should be considered an
anomaly, in the absence of experimental evidence it would seem
safer, so long as possible, to assume normal segregation, with posi-
tive heat of solution, to occur. However, at the moment semi-empir-
ical cohesive models for Fe–Cr exhibiting positive mixing enthalpy
in the Cr-rich region, while providing the correct a0-phase composi-
tion, have still to be produced and validated.

Turning now the attention to the shape and critical tempera-
ture for closure, TCrit, of the MG, it is clear that there is no imme-
diate obvious correlation with the mixing enthalpy curve. In
particular, even though the mixing enthalpy curves from CDM
and CE are similar, TCrit differs by as much as 648 K. Moreover,
the shape of the MG between CDM and CE appears to be com-
pletely different, the latter being the most symmetric. On the
other hand, somehow surprisingly, the MG produced by 2BM
and CDM appear to be very similar in shape and close at about
the same TCrit (the difference is only 76 K), while the difference
in height between the respective mixing enthalpy curves is more
than 37 meV. This comparison illustrates the inadequacy of a com-
mon misconception, according to which the height of the mixing
enthalpy determines the closure temperature of the MG. A simple
analysis shows that, more important than the height of the mixing
enthalpy curve, is its curvature, which rationalizes the shape and
TCrit of the MG. It is easy to realise that the MG closes at the tem-
perature where the second derivative (with respect to concentra-
tion) of the free energy becomes positive for all concentrations.
Given the second derivative of the free energy, within the RSM
approximation, as

F 00ðx; TÞ ¼ E00mixðxÞ þ
kBT

xð1� xÞ ; ð11Þ

the critical temperature and concentration are given as the highest
temperature for which F0 0(x, T) can be zero. In Fig. 5, the correspond-
ing expression for TCrit, TCrit ¼ � xð1�xÞ

kB
E00mixðxÞ, is plotted as a function

of concentration for the three cohesive models. From this plot TCrit

and its composition are predicted. Even better, the curves clearly
predict the shape of the MG (at high temperature), showing the
importance of the curvature rather than the height of the mixing
enthalpy.

To conclude this part, we show that all three semi-empirical
models considered here, while not explicitly including spins, do
manage to catch, if only from a purely phenomenological point
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of view, the effect of magnetism, in terms of not only the change
of the sign of the mixing enthalpy, as shown, but also inversion
of the SRO parameter. The driving force for this inversion is the
Cr–Cr pair repulsion, which is the main consequence of magnetic
frustration [18]. Fig. 6 shows that this repulsion is qualitatively,
and largely also quantitatively, captured by all three models, with
only minor and subtle differences, when compared to DFT values
from Refs. [18,21]. It is noteworthy that none of these DFT repul-
sion energy values were used as fitting parameters for either po-
tential. MC simulations aimed at reproducing the experimental
results of Mirebeau et al. on the sign-change of the short-range or-
der parameter [14] have also been performed with all three mod-
els. The results are shown in Fig. 7. It can be seen that all three
cohesive models succeed in reproducing in a qualitatively correct
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Fig. 7. Short-range order (SRO) parameter vs. Cr concentration according to
simulations performed: (a) using a Metropolis MC method including relaxation
with the CDM potential at 700 K [64]; (b) using an atomistic KMC method on rigid
lattice with the 2BM potential at 700 K [63]; and (c) using an exchange MC method
with the CE [29]. Also given, for comparison, are the corresponding experimental
values from [14], as well as the limiting line (dashed), representing the minimum
SRO parameter value theoretically possible.
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way the experimentally observed SRO inversion in the low-Cr con-
centration range of Fe–Cr alloys, with some quantitative discrepan-
cies from one model to the other, which are likely to depend also
on the different modelling tools used for the simulation: atomistic
kinetic Monte Carlo (AKMC) on rigid lattice with 2BM [60,63];
Metropolis Monte Carlo (MMC) in the transmutation ensemble
including atomic relaxation with CDM [64]; exchange Monte Carlo
(EMC) on rigid lattice in the case of the CE [29]. The main discrep-
ancies between models and with respect to the experimental data
concern the minimum SRO value reached, the extension of the re-
gion where the SRO is negative and the abruptness or smoothness
of the transition to a positive value. In addition, the two models for
which the study was extended beyond the point where phase sep-
aration occurred, predict a very positive SRO parameter after the
sign-inversion, when compared to the experiment. This is a clear
sign of a complete or close-to-complete a0-precipitation process
in the simulation [60], which is not granted in the experiment. In
particular, it has been shown in [64] that the SRO parameter which
is measured experimentally is in fact the average over the whole
sample of the SRO, which is actually negative in a and positive in
and a0. The tendency to grow after reaching a minimum and the
eventual change of sign do not reflect, therefore, a loss of order
and the appearance of a purely random solute distribution, but
only the average compensation of the negative value of the a
phase, due to the segregation of Cr-rich a0. As a consequence, the
results of both simulations and experiments become extremely
sensitive to the actual advancement of the segregation process
and to the actual microstructure, in terms of size and density of
precipitates, and even simulation box size. Also experimentally
important differences are found depending on the actual annealing
or irradiation time [64]. Thus, it can be stated that all three models,
even without explicitly including a magnetic component in terms
of spin dynamics, do catch in a reliable way the effect, of magnetic
origin, of the sign-inversion of the mixing enthalpy on the SRO in
the Fe-rich region at temperature of practical interest, thereby
proving their capability of describing the Fe–Cr alloy in the ferro-
magnetic region of the phase diagram.

4.2. The effect of low-energy states on the phase diagram

The possible ground states according to the BCC-99 polyhedron
have been calculated for the three cohesive models and plotted in
Fig. 8. For concentrations up to 30 at.% Cr, the formation energies of
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Fig. 8. The heat of formation for the BCC-99 structures calculated using the
different cohesive models.
the ordered structures with the three models are very similar, with
a few slightly negative values, due to the negative heat of mixing.
Note, however, that, since structures with a concentration less than
10% were deliberately not explored and plotted, it would be pre-
mature to call these structures ground states, since lower energy
structures under 10% may occur. For the middle range of concen-
trations, 30–70%, the formation energies for the 2BM and CE are
significantly more spread out than for the CDM case. An important
observation is that the formation energies in that concentration
range are never lower than 60 meV for the CDM case, while at
50% Cr for CE and 2BM some are as low as 8 meV and �8 meV,
respectively, the latter being clearly a ground state of the system.
As a general statement, the formation energies of structures in
the intermediate concentration region are significantly lower for
CE and 2BM than for CDM. Above 70% Cr, the formation energies
for CE and CDM become similar, while the 2BM provides signifi-
cantly lower values that can also be negative near 90% Cr, due to
the negative heat of mixing in the Cr-rich region in this case.

This short discussion regarding the low-energy states rational-
izes the phase diagrams presented in Fig. 9. These were calculated
using the ATAT package and implicitly account for the configura-
tional entropy, beyond the RSM, i.e. allowing for the existence of
ordered or partially ordered low-energy states. These calculations
show that the RSM results can be misleading. Both 2BM and CE
dramatically drop their TCrit from about 2700 and 3400 K, respec-
tively to a common value of about 1500 K, while TCrit for CDM stays
about the same. We interpret this as a clear consequence of the fact
that, while many low-energy structures are predicted by 2BM and
CE, hardly any is predicted by CDM. Note that the lack of closure of
the MG in the figure stems only from numerical issues, that cause
the algorithm to become very slow for intermediate concentra-
tions, as a consequence of sudden slope changes; therefore the
runs were interrupted after a clear tendency could be assured. Also
note that the low solubility in the Fe-rich zone of the CDM is an
artefact of the method, due to the cluster expansion fit in the ATAT
package, where structures below 10% and above 90% are disre-
garded, so that negative values (which would ensure a large solu-
bility at low temperature) could not be fitted in this specific case
(better results could be obtained with the 2BM, possibly because
of the lower maximum in the mixing enthalpy). This does not
question, however, the validity of the calculation for other concen-
trations, particularly concerning the closure of the MG. Finally,
note that in the case of the 2BM phase diagram for simplicity the
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Fig. 9. The phase diagram according to the three cohesive models taking into
account full configurational entropy.
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intermetallic at 50% (ground state) was neglected. This choice is
not expected to impact the results regarding TCrit, but including
this ‘fake’ intermetallic phase would certainly complicate the con-
struction of the complete phase diagram, by introducing additional
phase stability fields.

In summary, the large drop in TCrit for the 2BM and CE is the
consequence of the low-energy structures at intermediate concen-
trations, while the negligible drop in TCrit for CDM is explained by
the lack of them. This discussion illustrates the importance that
low-energy structures may have on the phase diagram and of
keeping them under control when fitting a semi-empirical cohe-
sive model.

4.3. The effect of vibrational entropy on the phase diagram

The methodology to estimate the excess vibrational free energy
outlined in Section 3.3 was applied with the 2BM and CDM poten-
tials (not with the CE, since it is a rigid-lattice model). The results
using the MJS and MD approaches are plotted together with exper-
imental data [65] in Figs. 10 and 11 for 2BM and CDM, respectively.
For the 2BM, the results for MJS and MD are quite similar, although
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Fig. 11. The excess vibrational free energy evaluated with different methods using
the CDM interatomic potential.

Fig. 10. The excess vibrational free energy evaluated with different methods using
the 2BM interatomic potential.
the contributions estimated by MJS are slightly larger than by MD.
This indicates an almost linear scaling of the MD results with tem-
perature, suggesting little or no anharmonic behaviour due to the
cohesive model. For the CDM, the results for MJS and MD are com-
pletely different, both qualitatively and quantitatively. The MD re-
sults suggest a saturation effect with temperature, showing that
CDM introduces anharmonic behaviour in the system, making
the results obtained by MJS unreliable (harmonic model). As a
peculiarity of the cohesive model, the vibrational free energy
changes sign with concentration and is positive in the Fe-rich re-
gion. This observation seems compatible with indirect calculations
of the vibrational free energy for the same cohesive model re-
ported in [41]. The apparent disagreement with indirect calcula-
tions performed with the same cohesive model in [8,66] is due,
as explained in [41], to an incorrect evaluation of the free energy
in those previous papers. When compared to experimental data
[65] (500 K curve derived from 300 K data and 1500 K curve de-
rived from high temperature limit, respectively), the 2BM seems
to overestimate the vibrational contribution by about a factor
1.5. On the contrary the CDM largely underestimates the same
contribution, by predicting a value that is a factor 6 smaller, and
even opposite in sign, as compared to experiment in the Fe-rich re-
gion. It should be emphasised, at any rate, that in neither case was
the vibrational entropy used for the fitting or verification of these
potentials, therefore these results, whatever their quality, are to-
tally fortuitous.

The effect of the vibrational entropy on the MG is shown in
Fig. 12. Here the phase diagram for the 2BM is obtained from a
temperature dependent cluster expansion, fed to ATAT, so as to
incorporate not only the configurational entropy, but also the
vibrational one, according to the calculations shown in Fig. 10.
The phase diagram for CDM, on the other hand, is taken from
[41] and was obtained applying a full thermodynamic integration
[40], thereby implicitly taking the vibrational entropy into account,
though having modified the initial samples to include also short-
range order effects in the Fe-rich region. The latter method is con-
sidered more reliable in the CDM case due to the anharmonic
behaviour of the model. On the other hand, the thermodynamic
integration method cannot account for low-energy states in the
intermediate range concentrations, but, as discussed above, such
states are absent in the case of the CDM cohesive model.

For the 2BM, the inclusion of the vibrational entropy makes TCrit

drop further, to about 1000 K, in close agreement with the Calphad
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value of �900 K for the metastable MG (see Fig. 1). Note that in Ref.
[29] it was already shown that, by allowing in the CE for the vibra-
tional entropy effect, based on an interpolation of the experimental
measurements from [65], TCrit also dropped to a value of the same
order. In the CDM case, however, which provides almost negligible
vibrational entropy, the phase boundaries are almost identical to
those obtained using the RSM approach (see Fig. 4). This discussion
illustrates the importance that the vibrational entropy can have on
the MG and of correctly allowing for it when developing a cohesive
model.
5. Concluding remarks

The thermodynamic properties of three different, non-magnetic,
semi-empirical cohesive models describing the Fe–Cr alloy, namely
two interatomic potentials (2BM [31] and CDM [30]) and a cluster
expansion [29], have been compared and evaluated on the same
footing. Despite apparent differences, 2BM and CDM are equivalent
approaches, although no one-to-one relationship exists (Appendix
A); the CE is, on the other hand, an inherently different type of mod-
el, of use only in a rigid-lattice approximation. All three models,
notwithstanding the different reference data to which they were
fitted, the different underlying fitting strategy and the different
inherent features, succeed in their main original purpose, which
was the reproduction of the mixing enthalpy sign-change and
short-range order inversion in the Fe-rich region of the Fe–Cr alloy,
at least up to a temperature of �700 K. While CDM and CE were
strictly fitted to DFT mixing enthalpy data in the whole range of
composition, for the 2BM a mixed fitting approach was used, delib-
erately adopting a symmetric mixing enthalpy curve, with a nega-
tive part in the Cr-rich region, too, not supported by DFT data.
This choice, though probably physically unjustified, allows the
composition of the a0-phase to be correctly predicted at tempera-
tures of technological interest by the 2BM, something that both
CDM and CE fail to do. In addition, this model provides non-negligi-
ble vibrational entropy, in fair agreement with experimental mea-
surements. On the other hand, this model exhibits a number of
low-energy ordered structures, not necessarily observed in reality,
including a ‘fake’ ground state at �50% Cr. When all effects are al-
lowed for, the TCrit where the a–a0 miscibility gap closes is found,
for the 2BM cohesive model, to be around 1000 K, which is reason-
ably close to the experimental TCrit of �900 K, as reflected in the
Calphad phase diagram. The CE from [29] also exhibits low-energy
structures, but none of them is a ground state. However, because of
the inherently rigid-lattice nature of this cohesive model, no vibra-
tional entropy is implicitly provided by it: the latter must be esti-
mated from experimental measurements, in order to be allowed
for. TCrit is found to be around 1500 K for this model, although
including the experimentally measured contribution would lower
this value to about 1000 K, too [29]. The CDM interatomic potential
does not show low-energy states and provides a negligible contri-
bution of vibrational entropy, thereby making a simple regular
solution approach adequate to evaluate the corresponding phase
diagram. Although at temperatures of technological interest it is
basically equivalent to the other two cohesive models, its miscibil-
ity gap does not close in the solid phase.

From a more general point of view, this study has shown the
impact that low-energy structures and vibrational entropy can
have on the phase diagram, making it clear that the latter is not
only dictated by the mixing enthalpy, although the concentration
dependence of the mixing enthalpy curve (at 0 K) clearly has an
important role. Thus, at least three ‘ingredients’ should be, in gen-
eral terms, included and kept under control, when producing a
semi-empirical cohesive model for an alloy, namely mixing enthal-
py curve (at 0 K), low-energy states and vibrational entropy.
Of course, in the case of the presently studied alloy, the effect of
magnetism on both enthalpy and entropy is expected to play a role,
as suggested e.g. in [28]. A proper identification of the relative
importance of this further ‘ingredient’, as compared to the other
ones, could not be addressed here, because the presently available
models specific for Fe–Cr do not include in any explicit way spins
and their dynamics. We can therefore only speculate about this
point. It seems reasonable to expect that magnetic entropy will
have an impact on the thermodynamic properties, e.g. on the shape
of the MG, mainly at high temperature, when approaching the Cur-
ie temperature, TC. It is also in this range where magnetism will
have an effect in determining the stability of low-energy structures
and, in general, the mixing enthalpy. Then, above TC, a second order
magnetic transition to the paramagnetic state occurs, which of
course cannot be allowed for by models not including spins. None-
theless, we have clearly shown that, even without explicitly includ-
ing magnetism, the models here analysed do succeed in catching
phenomenologically its main effects on the thermodynamic behav-
iour of Fe–Cr alloys, certainly up to 700 K, a temperature up to
which they can be reliably used. Above this temperature, too, they
perform reasonably well, particularly the 2BM. It can thus be stated
that magnetism is only one more ‘ingredient’ to be allowed for,
explicitly or implicitly, in a semi-empirical cohesive model. Even
a model explicitly including spin dynamics will have to cope with
a proper description of the mixing enthalpy, the low-energy struc-
tures and, above all, the vibrational entropy which, in the case of
Fe–Cr, is clearly one of the main contributors to determining the
phase diagram at high temperature.

Finally, this work has also enlightened some misconceptions
about the thermodynamic performance of the different existing
cohesive models for Fe–Cr, as well as about the methods used to
evaluate them. In particular, it has evidenced the difficulty of get-
ting a clear perception of the thermodynamic properties predicted
by a given model, if only one method is used, since the assump-
tions made in setting up the method may not be suitable to allow
for all effects of importance. In other words, depending on the used
modelling tool, the same cohesive model may perform differently
and provide different thermodynamic properties for the same sys-
tem. This unfortunate fact clearly complicates the task of system-
atically evaluating the thermodynamic performance of available
cohesive models and, conversely, the task of producing thermody-
namically fully reliable models.
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Appendix A. 2BM vs. CDM

In this appendix the 2BM and CDM formalisms are compared.
The total energy within CDM can be written as

ECDM ¼ EEAM þ
1
2

X
i; j

ðhðxijÞ � 1ÞVABðRijÞ ð1� dti tj
Þ; ðA1Þ

where ti is the atom-type occupying site i. Within 2BM the total en-
ergy is in turn

E2BM ¼ EEAM þ
X

i

Fs
ti
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The latter term of the above equation can easily be recasted as
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Identifying Eqs. (A1) and (A2) one finds the relationship between
both formalisms

Fs
ti

qs
i

þ
Fs

tj

qs
j

 !
us

ABðRijÞ ¼ ðhðxijÞ � 1ÞVABðRijÞ: ðA4Þ

The left factors in both sides of Eq. (A4) are functions of a variable
depending on the local concentration, while the right factor is a
function depending on the distance between two atoms. Heuristi-
cally, one can further identify

Fs
A½qs

AðxÞ�
qs

AðxÞ
þ Fs

B½qs
BðxÞ�

qs
BðxÞ

¼ 1� hðxÞ ðA5Þ

us
ABðRÞ ¼ �VABðRÞ: ðA6Þ

Formally, there is no one-to-one relationship between qs
ti

and xAB

since both quantities depend on the local concentration, which
can be different from the global concentration x. Therefore, it is
not possible to make a 2BM potential which is an exact replica of
a CDM potential. However, in terms of mixing enthalpy, Eqs. (A5)
and (A6) could be used to find a match between the potentials.
Practically, Eqs. (A5) and (A6) suggest that choosing a non-mono-
tonic s-density within the 2BM formalism is equivalent to the
development of a CDM potential.
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